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Abstract
The Clarity Challenge provides an excellent opportunity to
stimulate novel, performant machine learning approaches to
hearing aid signal enhancement. It is important that these meth-
ods are compared with classical methods which are well under-
stood. Here, an adaptive beamformer based on the minimum-
variance distortionless response design approach is proposed as
a superior baseline against which machine learning approaches
can be benchmarked. The design exploits documented charac-
teristics of the Challenge rules to identify noise-only segments
and the direction-of-arrival of the target. Hearing-aid spe-
cific modifications include automatic gain control and listener-
specific hearing loss compensation. On the dev dataset the pro-
posed method obtains a mean MBSTOI metric of 0.61 compared
to the baseline system which achieves 0.41.
Index Terms: MVDR beamformer, adaptive beamforming,
direction-of-arrival estimation, hearing aids

1. Introduction
Binaural hearing aids (HAs) allow microphone signals to be
passed between devices, enabling a pair of devices to be treated
as a single array. Recent work in binaural beamforming for
HAs has focused on binaural cue preservation for interfering
sources and post-filtering approaches [1]. However, in this
submission to the 2021 Clarity Enhancement Challenge [2],
we employ classical minimum variance distortionless response
(MVDR) beamforming [3] and prioritise linear signal process-
ing approaches in the hope that, by minimising signal distortion,
intelligibility can be improved.

During initial investigations it was noted that, since the spa-
tial arrangement is static within a scene, a good estimate of the
spatial properties of the noise could be obtained within about
0.5 s. It was also determined that steering the beam in the cor-
rect direction, or at least within ±7.5°, is critical. Using the cor-
rect HRIR was comparatively unimportant. Nevertheless, our
system attempts to select the correct one.

2. Formulation
Working in the short time Fourier transform (STFT) domain,
where ` and k are time and frequency indices, respectively, the
target source signal, S(k, `), is received at M microphones. Ex-
pressed in vector notation, the clean target microphone signals,
x(d)(k, `), are given by

x(d)(k, `) = H(k)TS(k, `) (1)

where H(k) is the stacked Fourier transform of the direct path
impulse responses between the target and the array and (·)T
denotes the transpose. In accordance with the Challenge defi-
nition, the first two channels of x(d)(k, `) are the front micro-
phone reference signals used by the MBSTOI metric.

The observed microphone signals, y(k, `), are expressed as

y(k, `) = x(d)(k, `) + x(r)(k, `) + v(k, `) (2)

where x(r)(k, `) is reflected sound due to the target and v(k, `)
is the reverberant signal due to the masker. An estimate of the
desired signal at the mth reference microphone, Zm(k, `), is
obtained using

Zm(k, `) = wm(k)Hy(k, `) (3)

where (·)H is the conjugate transpose. The beamformer
weights, wm(k), are obtained at each k according to [3]

wm = Rε
−1dm

[
dH
mRε

−1dm

]−1

(4)

where Rε = R + εI, I is the identity matrix and ε ≥ 0 is set
to limit the condition number of Rε to ≤1000. The frequency
index is omitted from (4) for clarity.

The choice of steering vector, dm(k), and covariance ma-
trix, R(k), determine the extent of noise reduction. Ideally
dm(k) is the anechoic relative transfer function (RTF) of the
array for a source in the target direction with respect to the mth
microphone. In the context of the Challenge, measured array
responses are available for 19 heads (or HRIRs) over a grid of
directions, one of which corresponds to the true response. Our
system estimates the correct HRIR from the received signals.

For maximum noise reduction one can choose R(k) =

E{y(`)yH(`)}, or equivalently, R(k) = E{(x(r)(k, `) +

v(k, `))(x(r)(k, `) + v(k, `))H}. However, the inclusion of
coherent reflections in the covariance matrix can lead to signal
cancellation. We therefore define our oracle noise covariance
matrix (NCM) as

R(k) = E{v(`)vH(`)}. (5)

3. Implementation
Processing is implemented in MATLAB using a frame length of
200 samples (4.54 ms at 44.1 kHz) with 50 % overlap. The FFT
size is also 200 so that algorithmic delay is <5 ms. Open source
code is available1.

On each file, the beamformer is designed assuming the
HRIR is ‘BuK’, the direction of arrival (DOA) is 0° and R(k) =
I∀k, indicating spatially white noise. Adaptation is achieved
by regularly updating parameter estimates. During the first 2 s,
R(k) is estimated every 200 ms using the ensemble average of
available frames. Between 2.1 s and 2.5 s, the DOA of the target
and HRIR are estimated every 100 ms, as described below. Af-
ter each update a new beamformer is designed and linear cross-
fading used to switch in the new beamformer.

1https://github.com/alastairhmoore/
clarity-challenge-2021-enhancer

https://github.com/alastairhmoore/clarity-challenge-2021-enhancer
https://github.com/alastairhmoore/clarity-challenge-2021-enhancer
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Figure 1: MBSTOI distribution for noisy signals (passthrough),
baseline approach and our proposed system. Results are shown
for four subsets of the train dataset selected according to
masker type (speech vs noise) and signal to noise ratio (SNR).

3.1. Novel DOA and HRIR selection

At each update, the steering vector is selected according to the
estimated DOA of the target and HRIR. Based on our recent
work on model-based beamforming [4], we approximate the
noisy signal covariance as the sum of the noise covariance and
the covariance of the anechoic target, thus neglecting the con-
tribution of the target’s reverberation. The chosen DOA at each
frequency is that which minimises the Frobenius norm of the
difference between the sample covariance matrix and the mod-
elled covariance. Steering vectors for all HRIRs are included
in this optimisation. The final estimate of the DOA is obtained
as the maximum of a histogram of DOAs selected at frequen-
cies between 500 Hz and 16 kHz. Using only those frequencies
at which the narrowband estimate of DOA equals the final es-
timated DOA, the most frequently selected HRIR is taken as
the estimated HRIR. Estimates are updated at 0.1 s intervals be-
tween 2.1 s and 2.5 s using an STFT with 50 ms frames overlap-
ping by 50 %, respecting the 5 ms look ahead constraint.

3.2. Levels and hearing loss correction

Conventionally, dynamic range compression is used to max-
imise the audible energy. However, introducing non-linearities
may reduce intelligibility and does distort the envelope correla-
tions used in MBSTOI. Accordingly, the proposed system em-
ploys automatic gain control (AGC) to limit the energy in the
input signal to 65 dB SPL. The AGC has an effective release
time of infinity, i.e. having been lowered to accommodate a
peak the gain does not increase. The AGC gain is computed
per frame in the STFT domain from the input signal but applied
as a smoothed gain (time constant: 0.1 s) in the time domain as a
post process, after beamforming and hearing loss (HL) compen-
sation, taking care to respect causality constraints. Additionally,
to avoid transients during initial adaptation, the output is muted
for the first 200 ms and faded in over the following 500 ms.

Based on the assumption that the input signal is at
65 dB SPL, frequency-dependent hearing loss compensation is
applied using the gain tables obtained using the Challenge base-
line system. This is applied as scalar gains in the STFT domain.
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Figure 2: DOA estimation accuracy as a function of update time
for dev dataset.

Baseline Proposed

Mean MBSTOI 0.41 0.61

Table 1: Performance metric on dev dataset

4. Results
Figure 1 shows the distribution of MBSTOI scores obtained for
4 subsets of the train dataset. Each subset contains the first
100 scenes in which masker is speech (or noise) and the SNR
is within 1 dB of the lowest (or highest) SNR for that masker
type. Curiously, the baseline system actually seems to degrade
performance. The proposed method is substantially better than
both the original signals and the baseline system. The benefit
is greatest in the low SNR cases where there is more room for
improvement.

Figure 2 shows the proportion of files in the dev dataset
in which the DOA is correctly estimated as a function of the
estimation time, where ‘correct’ is defined according to the ab-
solute error in estimated angle. At time 2 s the estimated DOA
is always 0° which limits the maximum error, but is rarely cor-
rect. By 0.5 s after the target starts, the estimated DOA is within
±7.5° of the true DOA in 90.8 % of scenes.

The final MBSTOI metric for the dev dataset is shown in Ta-
ble 1. Running on a 2.4 GHz Quad-Core Intel Core i5 MacBook
Pro with 16 GB of RAM, the averaged elapsed time for the pro-
posed enhancement algorithm is approximately 14 s per file. Of
this, over 9 s is taken by the DOA estimation and HRIR selec-
tion processing. With a little optimisation to avoid computing
unused intermediate results this could be substantially reduced.

5. Conclusion
The proposed sytem follows a conventional MVDR beamform-
ing paradigm and attempts to avoid excessive signal modula-
tions. The final performance score on the dev dataset, according
to the Challenge-provided MBSTOI is 0.61.
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