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Abstract
We apply and evaluate a deep neural network speech enhance-
ment model with a low-latency recursive least squares (RLS)
adaptive beamformer, and a linear equalizer, to improve speech
intelligibility in the presence of speech or noise interferers, as
submission E003 to the 2021 Clarity Enhancement Challenge
Round 1 (CEC1). The enhancement network is trained only
on the CEC1 data, and all processing obeys the 5 ms latency
requirement. We quantify the improvement using the CEC1
provided hearing loss model and Modified Binaural Short-Time
Objective Intelligibility (MBSTOI) score. On the development
set we achieve a mean of 0.632 and median of 0.642, compared
to the mean and median of 0.41 for the baseline baseline. On
the test set, we achieve a mean of 0.644 and median of 0.652
compared to the 0.310 mean and 0.314 median for the baseline.
In the CEC1 real listener intelligibility assessment, for scenes
with noise interferers, we see an average improvement in intel-
ligibility from 32% to 85%, but for speech interferers, we see
more mixed results, potentially from listener confusion.
Index Terms: speech enhancement, beamforming, hearing
aids, deep learning

1. Introduction
This is a technical report for our submission to the Clarity En-
hancement Challenge Round 1 (CEC1) [1].

2. Hearing aid model
Motivated by the benefit of mask-based separation for hearing-
impaired users [2] and the effectiveness of neural beamforming
[3], our hearing aid model contains three components, as illus-
trated in Figure 1: a parallel bank of 2 single-channel target
speech enhancement models, a recursive least-squares (RLS)
beamformer, and a linear equalizer. The speech enhancement
model is used to predict left and right channels of a stereo target
signal for the RLS beamformer, and was trained on the pro-
vided CEC1 dataset [1] only. No other existing data or trained
models were used. The enhancement, beamforming, and linear
equalizer all operate on 16 kHz audio, which is then upsam-
pled to 44.1 kHz. The enhancement model utilizes samples no
more than 5 ms into the future, and the beamformer and lin-
ear equalizer add no additional latency, so the entire solution
strictly obeys the 5 ms causal requirement.

2.1. Enhancement

We assume the following signal model for a single microphone:

yn = sn + vn, (1)

where yn is an input mixture waveform, sn is a target reverber-
ant speech waveform, and vn is a reverberant interferer wave-

form. For single-channel enhancement, we use a causal Conv-
TasNet masking network [4]. Rather than a learnable basis, we
use a STFT with 5 ms (80 samples at 16 kHz) square-root Hann
analysis window, 2.5 ms (40 samples at 16 kHz) hop, and FFT
size 256, where the analysis frame is zero-padded on the right
from 80 to 256 samples before computing the FFT. This en-
sures that we satisfy the 5 ms latency requirement, and allows
enhanced STFT frames to be passed directly to the RLS beam-
former. The convolutional masking network takes 0.3-power-
compressed magnitude STFT as input, and predicts a single
real-valued mask M̂ through a sigmoid activation. This mask is
multiplied with the complex input STFT Y to yield a complex
estimated target STFT: Ŝ = M̂ �Y. Power-law compression
with power 0.3 approximates a log function while avoiding−∞
at 0, partially equalizing the importance of quieter sounds rela-
tive to loud ones [5, chapter 3], [6].

The enhancement model was trained with a multi-
resolution spectral loss, which is mean-squared error between
compressed magnitude and compressed complex consistent
STFTs [7] at several different window sizes. At training time,
to get consistent STFTs to pass to the loss function, an esti-
mate of the time-domain target ŝn is computed by applying
an inverse STFT to the predicted target speech STFT Ŝ. An
estimate of the interferer waveform v̂n is also created by sub-
tracting the time-domain target speech estimate from the input
mixture waveform: v̂n = yn − ŝn.

The loss for a given window size between a reference STFT
X and an estimated STFT X̂ is as follows:

L(X, X̂) =
∥∥|X|0.3−|X̂|0.3∥∥2

F
+0.2 ·

∥∥X̃0.3− ˆ̃X0.3
∥∥2
F
, (2)

where ‖Z‖2F :=
∑

t,f |Zt,f |2 is the squared Frobenius norm,
[|X|0.3]t,f := |Xt,f |0.3 is the compressed magnitude STFT,
and [X̃0.3]t,f := |Xt,f |0.3ej∠Xt,f is the compressed complex
STFT. For the STFTs used in the loss function, we use square-
root Hann windows of 64 ms, 32 ms, 16 ms, 8 ms, and 5 ms,
with 75% overlap. Since past work has found that applying
the loss to both reference signals is beneficial [7], the loss is
applied equally to target and interferer signals. Thus, the total
loss Ltot(sn, vn, ŝn) is∑
r∈R

L
(
Sr{sn},Sr{ŝn}

)
+ L

(
Sr{vn},Sr{yn − ŝn}

)
, (3)

where R is the set of STFT window sizes and Sr is the for-
ward STFT operator with window size r. Note that the inverse
and forward STFTs that preserve consistency do not violate the
strict latency requirement of the model itself, since these opera-
tions are only performed at training time as part of the loss func-
tion. Also, only the initial estimated target STFT Ŝ = M̂�Y,
before computing ŝn, is passed to the downstream beamformer.
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Figure 1: Block diagram of our proposed system.

For training data, we use the Clarity Challenge training set
of 6000 scenes. We found on-the-fly augmentation to be advan-
tageous, leading to better validation metrics on the Clarity Chal-
lenge development set. This augmentation was done by remix-
ing targets with interferers from other examples in the batch.
Note that this avoids needing to generate additional training
scenes. Though this remixing does not respect the acoustic con-
sistency between sources, this inconsistency does not seem to
prevent learning. This may be because the enhancement model
is single-channel, and thus not as sensitive to acoustic spatial
inconsistencies.

Since the target always begins two seconds after the inter-
ferer in the training data examples, the enhancement model im-
plicitly learns this cue and can apply this at test time. Note that
the model likely utilizes timing cues from zero-padding of the
ground-truth target reference, and that no additional modifica-
tions to the architecture or training were required to achieve the
exploitation of this timing cue.

The model is implemented in TensorFlow, and is trained on
32 Google Cloud TPU v3 cores with Adam [8], batch size 256,
and learning rate 0.001.

2.2. Causal RLS beamformer

The single-channel enhancement model separately processes
the front-left and front-right microphones, producing a stereo
complex estimated target speech STFT. This STFT is used to
derive a causal RLS adaptive filter [9, 10, 11] that performs
beamforming, which introduces no additional latency.

Mathematically, at step t, given a new target vector xt ∈
RN and corresponding input vector yt ∈ RM , the RLS filter
computes a linear filter Wt ∈ RM×N given the previous fil-
ter Wt−1, previous estimated inverse input covariance matrix
Pt−1, and averaging weight λ:

gt = Pt−1yt / (λ+ yT
t Pt−1yt), (4)

Pt = (Pt−1 − gty
T
t Pt−1)/λ, (5)

Wt = Wt−1 + gt(x
T
t − yT

t Wt−1). (6)

P0 is initialized to I/δ, where δ is a diagonal loading factor
and I is the identity matrix We use averaging weight of λ = 1.0
(which assumes the listener is stationary, and thus all obser-
vations up to the present time are used) and diagonal loading
factor of δ = 0.001. For nonstationary scenarios, a smaller av-
eraging weight λ < 1.0 could be used to adapt to time-varying
conditions.

In addition to the 6 microphones on the hearing aids, we
also use the past 4 frames of context [3] as additional virtual
microphones. Furthermore, we use the real and imaginary parts
of the stereo target STFT and multichannel input STFT as ad-
ditional dimensions, which corresponds to a widely-linear RLS
filter [12]. Thus, the size of target and input vectors for each
frequency are N = 2 · 2 = 4 and M = 2 · 4 · 6 = 48, re-
spectively. A separate RLS filter is used for each frequency.
For each time frame t, the predicted RLS filter Wt is applied
to the input yt as WT

t yt to yield the real and imaginary values
of a stereo beamformed target STFT. This beamformed STFT is
then passed to the linear equalizer.

2.3. Linear equalizer

For each provided listener binaural audiogram, we utilize a lin-
ear equalizer to adjust the final audio. In the beamformer’s
STFT space, each coefficient is multiplied by a gain correspond-
ing to 0.65 times the hearing level (HL) in dB specified in the
audiogram, interpolated between the audiogram frequencies.
Results are near optimal for a range of factors from about 0.4
to 0.75, consistent with the audiologist’s “one-half gain rule”
[13] to provide gain to compensate about half the loss for a lin-
ear aid. Ideally, as in a multiband compressor, a higher fraction
of the HL would be compensated at lower speech levels, and a
lower fraction at higher levels, but there is not so much dynamic
range in the challenge material that that seemed necessary.

Finally the gain is reduced by−30 dB to be at the level that
works best through the hearing loss model followed by MB-
STOI evaluation. The −30 dB and 0.65 fraction were jointly
optimized. For output for listening, we use −20 dB instead
which appeared best from brief qualitative testing.

To reconstruct the time-domain estimate of enhanced
speech, the inverse STFT is applied to the output of the lin-
ear equalizer. The inverse STFT uses a 5 ms square-root Hann
synthesis window with 2.5 ms hop, which obeys the strict 5 ms
latency requirement of the challenge.

3. Results
3.1. Model-based intelligibility evaluation

The CEC1 provided a baseline hearing aid solution which
achieved on the development dataset a mean and median MB-
STOI score of 0.41 [1]. During development of our system,
we also used an additional baseline: a simple solution where
the front two microphones were directly used as the output of
our baseline hearing aid (so the other 4 microphone inputs are



ignored). On the CEC1 development dataset, and using the
CEC1 hearing loss model, this baseline yielded MBSTOI mean
of 0.559 and median of 0.569.
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Figure 2: Improvement in MBSTOI score of proposed hearing
aid model, compared with the Clarity Challenge baseline sys-
tem [1], based on interferer type, SNR and angle between target
and interferer. Dashed line denotes no improvement. Boxes rep-
resent quartiles and median; whiskers denote 10%–90%.

In comparison, our proposed solution with our beamformer
but no equalizer achieved on the development set an MBSTOI
mean of 0.596 and median of 0.605. By adding the linear equal-
izer, we achieved MBSTOI mean of 0.632 and median of 0.642.

To understand in more detail the particular scenarios where
the proposed solution performed significantly better than the
CEC1 baseline, we computed, for each scene and listener, the
difference in MBSTOI score, with a positive values reflecting
an improvement of the proposed solution over the CEC1 base-
line. Figure 2 shows this difference broken down by interferer
type, the absolute azimuth angle difference between the target
and interferer (i.e. 0 degrees reflects the target and interferer
sounds coming from the same direction, while 180 degrees re-
flects the sounds coming from entirely opposite directions) and
input signal-to-noise ratio (SNR). Our proposed solution gener-
ally improves in all scenarios, with the improvements tending
to be higher for larger separation angles, and uniform improve-
ment over input SNR.

Table 1 shows several ablations for our approach compared
to our proposed system, and the two baselines (front two micro-
phones and CEC1 baseline). Removing both the beamformer

and the equalizer results in the worst degradation (reduction
of 0.073 mean MBSTOI), indicating the relative importance
of these components. Adding either of these components back
in boosts MBSTOI by nearly 0.03. Training the enhancement
model without augmentation led to overfitting quicker (in only
about 20000 training steps), and degrades MBSTOI by 0.024.
Finally, using only 1 context frame instead of 4 for the beam-
former produces a drop of 0.019. Note that it is not possible
to ablate the enhancement model, because the beamformer de-
pends on it for a target signal.

Table 1: Ablations for MBSTOI on development set.

Ablation/Model MBSTOI mean MBSTOI median

Proposed 0.632 0.642

1 context frame 0.613 0.624
No augmentation 0.608 0.618
No beamformer 0.596 0.607
No equalizer 0.596 0.605
No b.f., no eq. 0.567 0.577

Front 2 mics 0.559 0.569
CEC1 baseline 0.41 0.41

Lastly, we note on the test set, we achieve a mean of 0.644
and median of 0.652 compare to 0.310 mean and 0.314 median
baseline.

3.2. Example submission processed audio

We plot sample audio waveforms or a noise and speech inter-
ferer examples in Figure 3 and Figure 4, respectively, and in-
clude the ground truth target waveform along with the baseline
of using just the front two microphones. For both types of inter-
ferers, our submission demonstrates an emergent phenomenon,
whereby the initial waveform is complete silence right up until
the detected target speech onset, which in these examples varies
from 2.0s to 2.7s. As we note in Section 2.1, the enhancement
model likely learns this pattern from the training data. A review
of additional examples suggests the enhancement model is quite
accurate at identifying speech onset.

Lastly, we note that beyond the initial period before target
speech onset, the interferer is only attenuated, and not entirely
eliminated, as is evident in the last 1s of each example.

3.3. Listener intelligibility evaluation

As a part of the CEC1, real listeners in a listening panel lis-
tened to submitted audio samples and the intelligibility of those
samples were evaluated quantitatively. For each utterance, the
correctness, the number of words identified correctly as a per-
centage of the total number of words, was assessed. Based
on preliminary results from a subset of the listeners presented,
shown in Figures 5 and 6, our submission performed among the
best for scenes with noise interferers, with an average increase
in correctness over the baseline from 32% to 85%, but among
the worst for scenes with speech interferers, where correctness
decreasing from 48% to 31%. In fact, for speech interferers,
many listeners had near-zero scores; although some listeners
did achieve scores much higher than baseline, an improvement
over baseline more consistent with that achieved with the noise
interferers.

After investigating these lower scores with the speech in-
terferers, it appears many listeners may have experienced con-



Figure 3: Sample audio waveforms (average of left and right
channels) for scene S08143, a target speaker with a noise inter-
ferer, from the development dataset (withheld from model train-
ing). Our submission consists of silence up until about 2.7s,
approximately the onset of the target speaker. The baseline is
here is just the front two microphones.

fusion with identifying the incorrect speaker as a target, as ev-
idenced by the following. Listeners were instructed ”You will
hear two talkers speaking at the same time. One talker will start
later than the other. You must repeat what this 2nd talker is
saying.” and during the study, were reminded ”You will hear
two talkers. Repeat the 2nd talker.” However, as illustrated in
Figure 4, in our submission, both speaker’s voices appear simul-
taneously after an initial period of silence. The target speaker
finishes speaking first, whereas the interfering speaker finishes
speaking last, and we believe this may have led some listeners
to mistake the interferer as the target. Furthermore, a review of
the preliminary listener transcripts shows some listeners (e.g.,
p219) with a near-zero overall score gave no response at all
for only the highest SNR examples (examples where the inter-
ferer may not be audible at all in our submissions), suggesting
they were (incorrectly) listening for the interferer. In addition,
there were some listeners (e.g., p218) who have nearly perfect
utterance-level scores on some of the utterances, but completely
incorrect transcripts for other utterances, suggesting that they
correctly identified the target speaker in some utterances but not
others.

3.4. Computational resources

The enhancement model was trained for 76360 steps on 32
Google Cloud TPU v3 cores, which took about 10 hours wall-
clock time. This model has 2.9M trainable parameters. Since it
operates on a STFT with hop 2.5 ms, the enhancement model
requires approximately 1.16B multiply-and-accumulate (MAC)
operations per second for each stereo channel. The RLS beam-
former computes a new beamforming filter every 2.5 ms for
129 frequencies, each of which requires only a few matrix mul-
tiplies. The linear equalizer only needs to compute a 129-
dimensional vector of gains from the audiogram once for a
given listener, and this filter is applied every 2.5 ms.

Figure 4: Same as Figure 3 but for scene S07458, a target
speaker with an interfering speaker. Our submission consists
of silence up until about 2.0s, slightly before the onset of the
target speaker.
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Figure 5: Preliminary listener intelligibility evaluation results
for baseline (E001) and our submission (E003) for noise and
speech interferers. Correctness is number of words identified
correctly as a percentage of the total number of words.

4. Discussion
Though our proposed solution yields a higher MBSTOI score,
and qualitatively sounds less noisy than our baseline of just us-
ing the front two microphones, we did not conduct quantitative
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listening tests.
The fact that we used linear equalization instead of the usual

multiband compression (MBC) does not mean we believe that
is a better solution for a hearing aid, but it seemed good enough
for this challenge that has a relatively limited dynamic range of
speech loudness. We note that MBC could be applied using the
same STFT frames such that no additional algorithmic latency
would be introduced.

Our speech enhancement model implicitly learned to iden-
tify the target speaker from the speech interferer from the fact
that in all training (and test) data, the target begins speaking
after 2 seconds. To get this model working in a real scenario
where it cannot rely on this cue, some conditioning information
indicating the target speaker could be used, e.g speaker identity,
distance, or azimuth. Or, a model could separate all the sources
(individual speech sources and noise), and a user could select
via some user interface which one to focus on.

Lastly, our submission completely silenced the interferer
during the initial period of each scene before target speech on-
set. This may have created confusion for the listener panel eval-
uation since the listeners were instructed to ignore the first voice
and transcribe the second. This was not an intentional decision
on our part, but an artifact of the way the enhancement model
was trained and the characteristics of the training data. It would
be interesting to explore if allowing an attenuated version of
the interferer to be audible would allow listeners to adapt to the
noise source, and thereby achieve better intelligibility. In addi-
tion, in real scenarios, it may be helpful to explore ways to give
listeners control over the interferer suppression level.
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