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Abstract
This paper summarises an end-to-end system for the first round
Clarity enhancement challenge. The system consists of a de-
noising module and an amplification module for speech-in-
noise enhancement for hearing impaired listeners. These two
modules are optimised in two stages. In the first stage, the de-
noising module is optimised for interferer suppression. In the
second stage, the amplification module, which is individualised
to a listener’s hearing ability, is optimised to maximise the intel-
ligibility. Both objective and subjection evaluation results show
the system with the configuration incorperating a multi-channel
Conv-TasNet based denoising module and a finite impulse re-
sponse filter based amplification module can significantly out-
perform the baseline system.
Index Terms: Hearing aid speech processing, speech enhance-
ment, speech-in-noise, end-to-end

1. Introduction
The Clarity challenge [1] aims to find optimal machine learning
methods for hearing aid processing of speech-in-noise. In the
first round of enhancement challenge, the problem of speech-in-
noise in everyday home environments is addressed. Domestic
scenes containing hearing impaired listeners, target speech sig-
nals and noise or speech interferers are simulated. Participating
systems are expected to provide enhancement for the listeners
and maximise intelligibility of the target speech signals.

This paper describes the Sheffield system, which consists
of a denoising module and an amplification module, targeting
at interferer suppression and hearing loss compensation. With
a differentiable hearing loss model and an intelligibility objec-
tive embedded in the optimisation, the system manages to be
customised to a listener’s hearing ability and improve the intel-
ligibility.

This paper is organised as follows. Section 2 briefly reviews
related work on noise suppression for hearing aids and hearing
aid amplification formulae. Section 3 describes the proposed
two-stage end-to-end enhancement system. Section 4 presents
the database, the detailed system setup, and the evaluation meth-
ods. The results comparing the performances of proposed sys-
tems and the baseline system are presented and discussed in
Section 5. Section 6 concludes the paper.

2. Background
Noise suppression has been used in hearing aids since the
1970s, including adaptive filtering, spectral subtraction, spatial
filtering [2, 3, 4], in which beamforming is particularly popu-
lar [5]. Many recent hearing aids also include environmental
classification algorithms [6, 7] that allow the characteristics of
the noise suppression algorithms to be tuned separately for dif-
ferent noise types [3]. Recently, deep neural networks have also
achieved impressive success [8, 9, 10].

Hearing aid amplification formulae have long been stud-
ied. The National Acoustic Laboratories’ Revised (NAL-R) fit-
ting [11] was a well-recognised linear amplification formula.
With the introduce of dynamic range compression, more com-
pressive fittings capable are developed, including NAL-NL1,
NAL-NL2, CAMEQ, CAMEQ2-HF, DSL [12, 13, 14, 15].

Our recent works [16, 17] have shown the potential of data-
driven optimised fittings based on objective evaluations. This
work follows the same path and takes advantage of end-to-end
learning to optimise a hearing aid processing system for speech-
in-noise.

3. Method
The overall workflow of the method is shown in Fig. 1. For each
ear of a hearing impaired listener, a denoising moduleMD and
an amplification module MA are optimised to enhance noisy
signals. The overall optimisation is divided into two stages.
In the first stage, MD is optimised with a signal-to-noise ra-
tio (SNR) loss for noise and reverberation suppression. In the
second stage, a differentiable hearing loss model MHL is in-
corporated, and MA is optimised with an objective function
consisting of an STOI loss [18] and a loudness loss [19] for the
compensation of hearing impairment. Meanwhile,MD can be
jointly optimised in the second stage. All components are im-
plemented with PyTorch [20], and the back-propagation algo-
rithm is used to compute gradients for the optimisation. MD ,
MA andMHL are described in this section.

3.1. Denoising module

The denoising module MD aims to suppress disturbances
caused by both noise and speech interferers. Conv-TasNet [8]
is an end-to-end convolutional time domain audio separation
network and has shown its successes for single-channel speech
separation and denoising tasks. In order to exploit the spatial
information provided by multi-channel signals in the Clarity
Challenge, the multi-channel (MC) Conv-TasNet is used in this
work asMD . The MC-Conv-TasNet has been proved effective
for a joint denoising, dereverberation and separation task [21].

The structure of MC-Conv-TasNetMD is shown in Fig 2.
It incorporates a spectral encoder, a spatial encoder, a separator
and a decoder. Given a multi-channel noisy signal x ∈ RC×T ,
where C is the number of channels and T is the number of sig-
nal samples, the spectral encoder takes one channel as the in-
put and maps segments of this channel x0 ∈ R1×T to high-
dimensional features with a 1-D convolutional layer. Mean-
while, the spatial encoder extracts the spatial information from
x with a 2-D convolutional layer. Outputs of both spectral and
spatial encoders are utilised by the separator, which then com-
putes a mask for the target features. The separator consists of
multiple 1-D convolutional blocks, which includes multiple 1-D
convolutional layers, PReLU activations, normalisation layers,
and residual connections. Finally, the decoder reconstructs a



Figure 1: Overall workflow of the two-stage optimisation for the denoising and the amplification modules.

Figure 2: Structure of MC-Conv-TasNet

single channel output ŷ ∈ R1×T with the estimated features
provided by the separator.

Different from [8, 21], SNR rather than scale-invariant SNR
(SI-SNR) is used as the objective, so that the signal level stays
consistent as it is critical for the down-streaming amplification.
The SNR loss is expressed as:

LD(y, ŷ) = −10 log10

‖y‖2

‖y − ŷ‖2 + τ‖y‖2

= 10 log10

(
‖y − ŷ‖2 + τ‖y‖2

)
− 10 log10 ‖y‖

2,

(1)

where ŷ and y are the estimated and reference signals, re-
spectively, and τ = 10−SNRmax/10 is a soft threshold prevent-
ing examples that are well denoised dominating the gradients
within a training batch [22]. SNRmax is set to 30 dB according
to [22].

3.2. Amplification module

The amplification module MA aims to implement individu-
alised enhancement to the denoised signals to maximise the
intelligibility for the hearing impaired listeners. In this work,
both a Conv-TasNet and a finite-impulse response (FIR) filter
are experimented to be used as the amplification module. The
structure of the amplification Conv-TasNet is roughly consistent
with the denoising MC-Conv-TasNet. The amplification FIR is
the same as the processor in [16]. The amplification module
takes the denoised signal ŷ ∈ R1×T as the input and produces
the amplified signal ẑ ∈ R1×T .

STOI [23] is used in the objective function as the target is
to achieve maximal intelligibility. A loudness constraint term
is also included, otherwise the signal could be over-amplified
as STOI is based on cross correlation regardless of signal level.
The objective function is expressed as:

LA(y, ẑ) = −STOI(y,MHL(ẑ))

+ α‖Γ(y)− Γ(MHL(ẑ))‖2,
(2)

where α is a weighting coefficient, Γ is the loudness com-
puting formula according to ITU-R BS.1770-4 [24], andMHL
represents the hearing loss the model which will be introduced
in the next section.

3.3. Hearing loss model

The hearing loss model MHL used in this work is a differ-
entiable approximation to the MSBG model [25, 26, 27, 28]
released in the challenge, and detailed explained in [17]. Dif-
ferent from the MSBG model, the differentiable hearing loss
model takes advantage of FIR filters and Hilbert transformation
for fast parallel computing. The model takes the audiogram of a
listener as input, and simulates free field, middle- and inner-ear
transformation, spectral smearing , and loudness recruitment.

4. Experimental setup
4.1. Databases

4.1.1. Scene databases

The Clarity challenge provides 10,000 simulated scenes, 6,000
of which are used as training set (train), 2,500 are treated as
the development set (dev), and 1,500 are used for final evalu-
ation set (eval). Utterances from 24 speakers are selected for
train, 10 for dev, and 6 for eval. Each scene incorporates a
six-channel noisy signal, which consists of the front, mid, and
rear microphone inputs for both left and right ear, and a dual-
channel clean anechoic signal. The sampling rate of the signals
is 44.1 kHz. Half of the speech interferers are domestic noises,
and the other half are speeches of a second speaker.

4.1.2. Listener databases

Bilateral pure-tone audiograms are used to characterise listen-
ers’ hearing abilities by recording the hearing thresholds at
[250, 500, 1000, 2000, 3000, 4000, 6000, 8000] Hz. 100 audio-
grams are provided in train and dev, and another 50 audiograms
for the eval.

4.2. System setup

4.2.1. Denoising module

The network configuration ofMD is described in this section.
256 and 128 filters are used in the spectral and the spatial en-
coders, respectively. The length of the encoder filters is 20 sam-
ples. 256 and 512 channels are used in the bottleneck 1 × 1
convolutional block and the convolutional blocks, respectively.
The kernel size in the convolutional blocks is 3. 6 convolutional
blocks with dilation factors of 1, 2, 4, ..., 32 are repeated 4 times
within the separator.

All six channels of noisy signals are used as the input, and
one channel of anechoic signals is used as the reference (de-
pendent on left or right ear). The signals are downsampled to
22.05 kHz. MD is trained for 200 epochs on 2-second long
segments. Adam optimiser [29] is used for training with the



initial learning rate of 1e-3. Gradient clipping with maximum
L2-norm of 5 is applied. The convolution layers and layer nor-
malisations inMD are implemented causally. A NVIDIA Tesla
V100 SXM2 GPU is used for trainingMD , and two modules
are trained in total for the left and right ear.

4.2.2. Amplification module

Both Conv-TasNet and FIR filter are optimised as the amplifica-
tion module, noted asMCA andMFA, respectively. As hearing
losses cause sophisticated non-linear degradation, MCA is ex-
pected to provide such an amplification that can be better fit
to this degradation. In contrast, MFA is optimised to provide
a simple and linear amplification which processes signals with
constraints, i.e., avoid distortion or artifacts. The configuration
ofMCA is consistent withMA, except for the number of sep-
arator convolutional blocks being two. The implementation of
MFA is detailed described in [17], and the length of the FIR fil-
ter is 882. The latency ofMCA is less than 1 ms as the encoder
filter length is 20. The latency of MFA used for evaluation is
more than 5 ms, while we further reduced the tap size of the
FIR filter to 220 and the difference is minimal.

The single-channel output of MD is used as the input,
and MA produces a single-channel amplified signal for hear-
ing loss compensation to each ear. The amplified signals are
hard clipped from -1 to 1 after amplification, and then upsam-
pled to 44.1 kHz for the processing of MHL. MCA is trained
for 50 epochs with the initial learning rate of 1e-3 andMFA is
trained for 20 epochs with the learning arate of 5e-2.

4.3. Evaluation

4.3.1. Preliminary evaluation

The preliminary evaluation was conducted on the first listener
in the dev set, i.e. L0001, and the scenes are selected according
to the development scenes-listeners list. Following the objective
evaluation methods conducted by the challenge, enhanced sig-
nals are processed by the MSBG hearing loss model and com-
pared with the corresponding anechoic siganls. The differences
are measured by both MBSTOI [30] and DBSTOI [31] scores.
MBSTOI is a modified version of DBSTOI to eliminate the pre-
dicting offset in low SNRs, but it is based on the assumption of
linear and relatively simple scenarios. It is observed that MB-
STOI could be invalid in our case, therefore DBSTOI is also
used for the objective evaluation. The amplification formula in
the OpenMHA [32] is also used as the amplification module for
comparison. The baseline MBSTOI scores provided by Clarity
are also included.

4.3.2. Final evaluation

The final evaluation consists of an objective evaluation and a
subjective evaluation, both conducted by the Clarity committee.
In the objective evaluation, each scene within eval is evaluated
with four audiograms by MBSTOI. In the subjective evaluation,
each scene within eval is evaluated by a hearing impaired lis-
tener with recognition tests.

5. Results
5.1. Preliminary results

The preliminary results are shown in Table 1. The baseline uses
OpenMHA system asMA without noise suppression as shown
in the first row. It is clear that baseline system can benefit from

Figure 3: Subjective evaluation scores for each listener. PN:
proposed system on scenes with noise interferers; PS: proposed
system on scenes with speech interferers; BN: baseline system
on scenes with noise interferers; BS: baseline system on scenes
with speech interferers.

Table 1: Preliminary evaluation results. MD: the denoising
module;MA: the amplification module; Joint Opt: whether to
optimise the denosing module jointly when optimising the am-
plification module.

MD MA Joint Opt MBSTOI DBSTOI

- OpenMHA - 0.414 -
MC-Conv-TasNet OpenMHA - 0.545 0.650
MC-Conv-TasNet Conv-TasNet True 0.645 0.836
MC-Conv-TasNet Conv-TasNet False 0.651 0.827
MC-Conv-TasNet FIR False 0.646 0.766

the noise suppression provided by MC-Conv-TasNet. When
MCA is used as the amplification module, it can hardly gain
benefits from joint optimisation. And MFA will hardly learn
nothing when jointly optimised withMD , thus the results are
not shown here. In conclusion, joint optimisation ofMD does
not bring significant improvement to the overall system.

It can be observed that MCA as the amplification module
can achieve better objective performance, while it brings more
artifacts and corruption to the signal, therefore it is submitted
for only the objective evaluation. On the contrary, FIR as the
amplification module achieves slightly lower objective scores,
but the enhanced signals are more intelligible according to our
initial listening evaluation. Therefore, the FIR enhanced signals
are submitted to the final subjective evaluation.

5.2. Objective results

Table 2: Final objective results. MD: MC-Conv-TasNet based
denoising module; MCA: Conv-TasNet based amplification
module;MFA: FIR based amplification module.

Method Speech interferer Noise interferer Overall
Median Mean Median Mean Median Mean

Baseline 0.33 0.34 0.28 0.29 0.31 0.31
MD +MCA 0.70 0.70 0.67 0.67 0.69 0.69
MD +MFA 0.74 0.73 0.69 0.69 0.72 0.71

The results of MBSTOI objective evaluation are shown in
Table 2. The proposed systems achieve significant improve-
ment over the baseline. BothMCA andMFA perform better on
scenes with speech interferers than with noise interferers. It is
worth noting thatMFA performs better thanMCA, as FIR filter
has such a simple structure that could have better generalisation
ability, compared to deep neural network basedMCA.



5.3. Subjective results

Table 3: Final subjective results.MD: MC-Conv-TasNet based
denoising module;MFA: FIR based amplification module.

Method Correctness (per cent)
Speech interferer Noise interferer Overall

Baseline 43.98 30.30 37.13
MD +MFA 61.88 81.03 71.45

The overall subjective evaluation results are shown in Ta-
ble 3. The recognition results of each listener on scenes with
speech and noise interferers are shown in Figure 3. Overall
speaking, the proposedMD +MCA system significantly outper-
form the baseline system. It is worth noting that the proposed
system achieves higher recognition correctness on scenes with
noise interferers than speech interferers. This can be explained
by observing the individual performances. The recognition cor-
rectnesses of three listeners (p219, p229, p239) on scenes with
speech interferers are exceptionally low, which could be caused
by the confusion on the listening test instruction, i.e., the listen-
ers are asked to repeat what the second talker when the interferer
is speech, and the system could completely eliminate the inter-
ferering speech thus there is only one talker left, which could
be the cause of confusion.

6. Conclusions
A two-stage end-to-end system, consisting of a denoising mod-
uleMD and an amplification moduleMA, is proposed in this
work. Both objective and subjective evaluation results show that
the combination of MC-Conv-TasNet based denoising module
and FIR filter based amplification module can significantly out-
perform the baseline system.
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