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Abstract
An adaptive beamformer based on the minimum-variance dis-
tortionless response design approach is proposed in the con-
text of the 2021 Clarity Enhancement Challenge. The beam-
former aims to improve the signal-to-noise ratio of the target
signal while broadband automatic gain control and linear filter-
ing compensate for listener-specific hearing loss. The proposed
system exploits a priori knowledge of the target onset time to
estimate essential beamforming parameters with more certainty
than might be expected in unconstrained listening conditions.

On the eval dataset the proposed method obtains a mean
MBSTOI metric of 0.66 and, for the 21 hearing impaired lis-
teners for whom data was available, a mean “correctness” of
81.1 %. This a substantial improvement over the baseline which
achieves 0.31 and 39.8 %, respectively.
Index Terms: MVDR beamformer, adaptive beamforming,
direction-of-arrival estimation, hearing aids

1. Introduction
The 2021 Clarity Enhancement Challenge [1], hereafter the
Challenge, requires that entrants optimally process simulated
stimuli containing a mixture of a single target and single noise
or speech interferer, under mildly reverberant conditions. Per-
formance is measured using both the modified binaural short-
time objective intelligibility measure (MBSTOI) metric [2],
modified to simulate hearing loss, and using speech intelligibil-
ity experiments with hearing impaired (HI) listeners. In this pa-
per, we present the system contributed by the Environment and
Listener-Optimised Speech Processing for Hearing Enhance-
ment in Real Situations (ELO-SPHERES) project1 consortium.

To be effective, hearing aids (HAs) must make a desired
sound source both audible and intelligible. The former requires
that the HAs provide sufficient, frequency-dependent gain to
overcome a listener’s raised hearing threshold, whilst avoiding
discomfort-inducing over amplification. The latter requires that
undesired signals which mask the desired target be selectively
attenuated. The system presented here performs these two func-
tions independently, as shown in Fig. 1. Improved audibility is
achieved using broadband automatic gain control and listener-
specific linear filtering, as described in Section 3. Improved
intelligibility is achieved using binaural beamforming, as de-
scribed in Section 2.

Many speech enhancement systems use non-linear process-
ing to selectively attenuate time-frequency regions dominated
by noise. This can introduce disturbing artefacts. Typically,
HAs include non-linear processing in the form of frequency-
dependent wide dynamic range compression (WDRC). This

1https://www.imperial.ac.uk/speech-audio-processing/projects/elo-
spheres/
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Figure 1: System diagram showing main processing blocks.

ensures audibility across a range of scenarios, where the sig-
nal level can vary drastically. However, in the Challenge, where
the scenarios are relatively constrained, fast-acting WDRC is
unlikely to be necessary and may actually reduce the signal
to noise ratio (SNR) [3]. In light of the potential negative ef-
fects of non-linear processing, our system uses linear process-
ing throughout.

2. Beamformer
Beamforming, or spatial filtering, combines the signals from
multiple microphones to enhance incident sound from a desired
direction while attenuating sound from other directions. In gen-
eral, using more microphones and spreading them over a larger
volume improves the performance of beamforming. Binaural
HAs allow microphone signals to be passed between devices,
enabling a pair of devices to be treated as a single array. In bin-
aural beamforming, two beamformers are implemented, leading
to an output for the left and right ears. Depending on how the
beamformers are designed, the binaural outputs will contain dif-
ferent spatial cues. Recent work in binaural beamforming for
HAs has focused on binaural cue preservation for interfering
sources and post-filtering approaches [4, 5, 6]. However, in this
submission to the Challenge [1], we employ classical minimum
variance distortionless response (MVDR) beamforming [7] and
only attempt to maintain the spatial attributes associated with
the direct path component of the target source. As a result, the
residual noise is perceived to originate from the same position
as the target.

2.1. Signal model

Working in the short time Fourier transform (STFT) domain,
where k and ` are frequency and time indices, respectively, the
monaural target source signal, S(k, `), is received at M micro-



phones. The direct-path signal, X(d)
m (k, `), received at the mth

microphone is

X(d)
m (k, `) = Hm(k)S(k, `) (1)

where Hm(k) is the Fourier transform of the direct-path im-
pulse response between the target and the mth microphone. We
refer to X(d)

m (k, `) as the desired signals. Without loss of gen-
erality, m = 1 and m = 2 are used to denote the reference
(front) microphones at the left and right ear, respectively.

The total received signal, Ym(k, `), at the mth microphone
is

Ym(k, `) =X(d)
m (k, `) +X(r)

m (k, `) + Vm(k, `) (2)
=Xm(k, `) + Vm(k, `) (3)

whereX(r)
m (k, `) is the reflected signal due to the target source,

Xm(k, `) is the total signal due to the target source and
Vm(k, `) is the sound due to the interferer. We refer to Ym(k, `)
as the received signals.

Using vector notation and substituting (1), (2) can be writ-
ten for all m = 1 . . .M as

y(k, `) = h(k)S(k, `) + x(r)(k, `) + v(k, `) (4)

where y(k, `) =
[
Y1(k, `) · · ·YM (k, `)

]T , h(k), x(k, `) and
v(k, `) are similarly defined and (·)T denotes the transpose.

2.2. MVDR formulation

The beamformer output, Zm(k, `), which is an estimate of the
desired signal at the mth reference microphone, X(d)

m (k, `), is
obtained using

Zm(k, `) = wH
m(k)y(k, `) (5)

where (·)H is the conjugate transpose.
By design, the MVDR beamformer minimises the power

in the output signal subject to a constraint that the desired sig-
nal should be passed undistorted. In this case, the beamformer
weights, wm(k), are obtained at each k according to [7]

wm(k) =
Rε

−1(k)dm(k)

dHm(k)Rε
−1(k)dm(k)

(6)

where Rε(k) = R(k) + ε(k)I, I is the identity matrix and
ε(k) ≥ 0 is set to limit the condition number of Rε(k) to
≤1000. Crucially, (6) defines the weights, and therefore the
beamformer behaviour, in terms of a covariance matrix, R(k),
and a steering vector, dm(k). The choice of these quantities is
discussed next.

2.3. Covariance matrix estimation

A covariance matrix quantifies the interchannel coherence be-
tween each pair of microphone signals.

The desired, interferer and received signal covariance ma-
trices are defined respectively as

Rx(d)(k) =E{x(d)(k, `)(x(d))H(k, `)} (7)

Rv(k) =E{v(k, `)vH(k, `)} (8)

Ry(k) =E{y(k, `)yH(k, `)} (9)

where E{·} denotes expectation over time.

In MVDR beamforming, R(k) defines the covariance ma-
trix of the noise which should be attenuated. In real-world us-
age, it is common to assume the noise field has certain, fixed,
spatial characteristics, such as isotropic noise [8]. In this case,
R(k), is signal independent, which means it can be calculated a
priori, but is suboptimal. Alternatively, one can obtain an adap-
tive estimate of the true, time-varying covariance matrix. How-
ever, if coherent reflections from the target are erroneously in-
cluded in the estimate, this can lead to attenuation of the desired
signal.

The Challenge scenario is peculiar in that the positions of
all sources and microphones are static throughout a trial and
there is always a 2 s interferer-only period before the target on-
set. During initial investigations it was noted that a good es-
timate of Rv(k) could be obtained by approximating the ex-
pectation in (9) using the ensemble average over the first 0.5 s
of frames and that extending the averaging period improves the
estimate, up to 2.0 s seconds, when the target starts.

2.4. Steering vector selection

To obtain the best MBSTOI score, dm(k) should be the relative
transfer function (RTF) derived from the direct-path impulse re-
sponse from the target source to the array, normalised with re-
spect to the mth microphone

dm =
[
H1
Hm
· · · HM

Hm

]T
(10)

where the dependence on k is omitted for clarity.
Estimating the RTF from the received signal [9, 10] will

generally yield a response which includes the early reflections
and becomes unreliable at low SNRs. Therefore, it is common
to derive dm(k) from a database. Typically, impulse responses
are measured from a spherical grid of source directions, indexed
as q ∈ 1 . . . Q, to the ears of several real people and/or man-
nequins where the ‘head’ is indexed as p ∈ 1 . . . P . Using
an individually measured impulse response which matches the
true direct-path impulse response for the target direction leads
to improved speech intelligibility [8].

In the context of the Challenge, the database used to simu-
late the microphone signals is available. It contains 19 ‘heads’
and the target direction of arrival (DOA) is constrained to be one
of 9 possible target directions, spaced 7.5° apart. Our system
attempts to select the correct impulse response by estimating p
and q.

In the frequency domain, the available direct-path impulse
responses are denoted hp,q(k).

Based on our recent work on model-based beamforming
[11], we assume that the received signal covariance, Ry(k) can
be approximated as

Ry(k) ≈Rx(d)(k) +Rv(k) (11)

thus neglecting the contribution of the target’s reverberation.
Noting that Rx(d)(k) is a rank-1 matrix and is proportional to
h(k), we model Ry(k) as

R̃y(k) =αhp,q(k)h
H
p,q(k) + βR̂v(k) (12)

where α and β are scalar parameters and R̂v(k) is an esti-
mate of the interferer covariance matrix, obtained during the
interferer-only interval.

Estimates of the DOA and ‘head’ are obtained indepen-
dently at each k corresponding to frequencies between 500 Hz
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Figure 2: MBSTOI distribution for noisy signals (passthrough),
baseline approach and our proposed system. Results are shown
for four subsets of the train dataset selected according to
masker type (speech vs noise) and SNR.

and 16 kHz by solving

argmin
p,q,α,β

{∥∥∥Ry(k)− R̃y(k)
∥∥∥2
F

}
(13)

where ‖·‖2F denotes the Frobenius norm and α and β are scalar
parameters which account for the relative powers in the target
and interferer signals, respectively.

Since the simulated scenes use the same p and q at all k,
an heuristic method is used to select a single impulse response;
first the DOA is chosen as the mode of the per-frequency DOA
estimates; then the ‘head’ is chosen as the mode of the per-
frequency head estimates, considering only the subset of fre-
quencies at which the estimated DOA matches the final esti-
mate.

During initial investigations it was observed that selecting
the correct q, or at least the neighbouring grid index, was cru-
cial for good beamforming performance. In contrast, correctly
selecting p was less important.

3. Hearing loss compensation
In the baseline system, and in many commercial hearing aids,
multiband dynamic range compression is used to maximise the
audible energy in different frequency regions. However, intro-
ducing non-linearities may reduce intelligibility and does distort
the envelope correlations used in MBSTOI. Furthermore, we
suspect that time-varying manipulations of the scene may be
distracting to listeners. For the Challenge, we propose broad-
band level control combined with fixed linear filtering to par-
tially compensate for the listener’s audiogram.

3.1. Audiogram compensation

The baseline system [1] adopts the openMHA [12] implemen-
tation of the Camfit compressive fitting rule [13]. As a pre-
processing stage, this generates a gain table in which the gain
in each frequency band is stored for each possible input sig-
nal level. The proposed system uses the entries from this table
corresponding to an input signal level of 65 dB. Frequency de-
pendent gain is applied in the STFT domain by interpolating
the gain table values to the frequency resolution of the Fourier

Dataset Baseline Proposed

dev 0.41 0.61
eval 0.31 0.66

Table 1: Mean MBSTOI performance metric

transform. Since the signal level is assumed to be fixed, this
filtering process is fixed over time.

3.2. Automatic gain control

The process described above assumes that there is sufficient
headroom to apply the specified frequency-dependent gain. To
ensure this assumption is valid, the level of the input signal is
reduced, if required.

The root mean square energy is computed in each frame
and recursively smoothed with a time constant of 200 ms. If the
smoothed energy exceeds 65 dB SPL, the automatic gain con-
trol (AGC) gain is reduced, allowing 6 dB of headroom. The
AGC has an effective release time of infinity, i.e. having been
lowered to accommodate a peak the gain does not increase.

4. Implementation
Processing is implemented in MATLAB using a frame length of
220 samples (4.99 ms at 44.1 kHz) with 50 % overlap. The FFT
size is also 220 so that algorithmic delay is<5 ms. Open source
code is available2.

On each file, the beamformer is initialised assuming the
‘head’ is the Brüel & Kjær mannequin labelled ‘BuK’, the DOA
is 0° and R(k) = I∀k, indicating spatially white noise. Adap-
tation is achieved by regularly updating parameter estimates.

• During the first 2 s, R(k) is estimated every 200 ms us-
ing the ensemble average of available frames. It remains
fixed thereafter.

• Between 2.1 s and 2.5 s, the DOA of the target and ‘head’
are estimated every 100 ms as described in Sec 2.4. For
this, an STFT with 50 ms frames overlapping by 50 %
is used, taking care to respect the 5 ms look ahead con-
straint.

After each update a new beamformer is designed and linear
crossfading used to switch in the new beamformer.

The AGC gain is computed per frame in the STFT domain
from the input signal but applied as a smoothed gain (time con-
stant: 0.1 s) in the time domain as a post process, after beam-
forming and hearing loss (HL) compensation, taking care to
respect causality constraints. Additionally, to avoid transients
during initial adaptation, the output is muted for the first 200 ms
and faded in over the following 500 ms.

Running on a 2.4 GHz Quad-Core Intel Core i5 MacBook
Pro with 16 GB of RAM, the averaged elapsed time for the pro-
posed enhancement algorithm is approximately 14 s per file. Of
this, over 9 s is taken by the DOA estimation and ‘head’ selec-
tion processing. With a little optimisation to avoid computing
unused intermediate results this could be substantially reduced.
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Figure 3: DOA estimation accuracy as a function of update time
for dev dataset.

5. Results
Figure 2 shows the distribution of MBSTOI scores obtained for
4 subsets of the train dataset. Each subset contains the first
100 scenes in which masker is speech (or noise) and the SNR
is within 1 dB of the lowest (or highest) SNR for that masker
type. Curiously, the baseline system actually seems to degrade
performance. The proposed method is substantially better than
both the original signals and the baseline system. The benefit
is greatest in the low SNR cases where there is more room for
improvement.

Figure 3 shows the proportion of files in the dev dataset
in which the DOA is correctly estimated as a function of the
estimation time, where ‘correct’ is defined according to the ab-
solute error in estimated angle. At time 2 s the estimated DOA
is always 0° which limits the maximum error, but is rarely cor-
rect. By 0.5 s after the target starts, the estimated DOA is within
±7.5° of the true DOA in 90.8 % of scenes.

The final MBSTOI metric for the dev and eval datasets are
shown in Table 1.

At the time of writing, speech intelligibility evaluations are
ongoing. Based on the results of 23 HI listeners, the base-
line methods achieves ‘correctness’ score of 39.8 % whereas the
proposed achieves 81.1 %.

6. Conclusion
The proposed sytem follows a conventional MVDR beamform-
ing paradigm and attempts to avoid excessive signal modula-
tions. It provides a substantial improvement over the baseline
in terms of both the Challenge-provided MBSTOI metric and in
speech intelligibility experiments using HI listeners.
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