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Abstract 
This paper presents an entry into the Clarity-2021 challenge for 
hearing-aid speech enhancement (CEC1). A U-Net 
Convolution Neural Network was trained using the provided 
training data to predict clean spectrograms. The enhanced 
signal was then adapted to a listener’s audiogram using a 
hearing aid model that includes frequency equalization and 
dynamics processing. The average MBSTOI over the dev 
dataset was 0.56. The method showed a significant 
improvement over the baseline algorithm. 
Index Terms: speech enhancement, clarity challenge, u-net, 
convolution neural network 

1. Introduction 
The Clarity-2021 challenge [1] for hearing-aid speech 
enhancement was set up as a response to the increasing numbers 
of people with hearing loss [2]. A dataset was provided for 
training, development and evaluation of a speech enhancement 
algorithm. The challenge requires a system that doesn’t look 
ahead more than 5 ms. This paper describes a submission which 
uses the U-Net CNN architecture to enhance spectrograms. The 
U-Net was originally introduced for biomedical imaging [3] 
and more recently for audio source separation [4]. Section 2.2 
describes how the signal is first enhanced in a listener-agnostic 
way using the U-Net. Section 2.3 describes the hearing aid 
model used to adapt the cleaned signal to the listener. Code is 
available on GitHub [5]. 

2. Methodology 
The speech enhancement algorithm was spilt into two steps. 
First, a U-Net CNN predicts a clean signal from spectrograms 
of the 3 channels of each hearing aid (no listener adaption). 
Second, standard hearing aid processing algorithms are applied 
to adapt the signal to a listener via the audiogram. The model 
operates at a sampling frequency of 16 kHz. 

2.1. Datasets 

The Clarity-2021 dataset consists of 10,000 unique examples, 
split into train (6000), dev (2500), and eval (1500). Examples 
consisted of a single speech source captured in a simulated 
acoustic space with a competing noise source (competing talker 
or domestic noise). A Binaural Head Related Impulse response 
simulates the sound at three microphones of a behind-the-ear 
hearing aid. Each example is around 6 s long and the interferer 
precedes the onset of the target by 2 s and follows the offset by 
1 s. Clean targets were provided for the train and dev sets.  

2.2. Listener-agnostic noise reduction 

Figure 1 shows the speech enhancement system. All 6 input 
channels are used to predict the clean signal at left ear. To meet 
the 5 ms lookahead limit, the input is processed using a 80 
sample input frame with a 70 sample hop. To provide the 
network with more context, previous samples are prepended to 
the signal, until a 96,000 sample (6 s) input processing window 
is defined. Zero padding is used when no signal history is 
available.  As ‘the interferer always precedes the onset of the 
target by 2 s and follows the offset by 1 s’ [1], this additional 
context ensures that the network has access to the some of the 
isolated interferer. 

A Short-time Fourier transform (STFT) is computed from 
each input processing window (window length 1024, hop 256, 
hanning window). No logarithmic amplitude scaling or 
perceptual frequency binning is applied; the resulting STFT 
dimensions are 376x513. A trained U-Net is used to predict the 
clean magnitude STFT at the left ear from all 6 noisy magnitude 
STFTs (see 2.2.1). The cleaned magnitude STFT and the noisy 
phase STFT from channel 1 of the left ear are combined and the 
inverse STFT computed. This results in 96,000 samples 
referred to as the output processing window. 

The last 80 samples (5 ms) of each output processing 
window is the current output frame. The 1st half of a 20-sample 
hanning window is applied to the 1st 10 samples of the output 
frame, the 2nd half of the hanning window is applied to the last 
10 samples. The signal is synthesized by overlapping and 
adding the output frames with an overlap of 10 samples 
(0.625ms). Overlap-add is required to prevent artifacts due to 
jumps in level between adjacent frames. This occurs as the U-
Net operates independently on each input processing window; 
it has no memory of past outputs which results in a discontinuity 
in the level between adjacent output frames.  
 

 
Figure 1: Speech enhancement overview. Single 
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The U-Net is trained to output the signal at the left ear. 
However, by simply swapping the ears, right-for-left, for each 
hearing aid channel, the head is effectively mirrored and the 
clean magnitude response at the right ear can now be predicted 
with the same U-Net. The algorithm lookahead is 70 samples 
(4.375 ms). 

2.2.1. U-Net training 

The U-Net is similar to the deconvolution network [6] where 
each convolutional layer halves the size of the input but doubles 
the number of filters. This produces a small but deep 
representation which is then decoded using up-sampling layers 
back to the original size.  The U-Net includes skip connections 
between the encoder and decoder at equivalent resolution 
levels. This allows low-level information to flow from the 
encoder to decoder. Attention gates on skip connections learn 
to suppress irrelevant regions while highlighting useful features 
[7]. The implementation is based on the Customizable U-Net 
keras implementation [8]. Figure 2 gives an overview. 

 
Figure 2: U-Net, dimensions (frames, bins, channels) 

The input spectrogram is zero-padded so each dimension is a 
power of two so the resolution can be continuously 
halved/doubled through the U-net. Each Conv2D layer in the 
encoder consists of; a 2D convolution layer, a batch norm layer, 
a dropout layer (dropout rate of 0.3), a 2D convolution layer and 
a batch norm layer. Between each encoder layer, max-pooling 
with a pool size (2, 2) performs down-sampling. Deconv2D 
blocks consist of a 2D transposed convolution layer for up-
sampling, concatenated with the skip connection; a 2D 
convolution layer, a batch norm layer, a 2D convolution layer 
and a batch norm layer. 1x1 convolution maps the output to a 
single channel. The output is sliced to remove the padding.  

The U-net was trained on the Clarity training dataset [2]. 
For the training data an input frame size of 80 samples was used 
with an input processing window of 96,000 samples. This 
results in 1372 sample input processing windows. To reduce 
memory 10 % of the input processing windows were retained at 
random for training. This results in a 378x376x513x6 STFT 
tensor for each example. The target magnitude STFTs are 
calculated in the same way, but from the clean utterance before 
processing. The cross-correlation between the noisy signal 
(channel 1, left ear) and the clean utterance is used to ensure the 
targets are synchronized with the hearing aid signals. This 
results in a 378x376x513x1 STFT tensor for each target. The 
U-Net was optimized using mean absolute error loss, Adam 
optimization and a learning rate of 0.001 (TensorFlow 2.4.1). 
Training was terminated after 10 Epochs which took 22 Days 
using a Nvidia GTX 1080ti with 11Gb of memory, an intel i7 
cpu, and 32 Gb ram. 

2.3. Signal adaption to listener’s audiogram 

A simple hearing aid model was employed consisting of a 4-
band filter bank processor, a 2-channel compressor and a soft 
clipping processor. 

2.3.1. Filter bank  

A filter-bank was applied to the cleaned signal. Gain was 
applied to each band prior to recombination. An audiogram 
with pure tone sensitivity levels at 250 Hz, 500, 1 kHz, 2 kHz, 
3 kHz, 4 kHz, 6 kHz and 8 kHz was provided for each listener. 
The gain to apply to each band was calculated using a simple 
heuristic: 

𝐺!" = min(𝐺#$% , 𝑇!" − 𝑇&'())  (1) 
𝐺!" is the gain in band 𝑗 at ear 𝑖, 𝐺#$% is the maximum allowed 
gain (30 db), 𝑇!" is the threshold in band 𝑗 at ear 𝑖, and 𝑇&'() is 
the threshold of the most sensitive band (both ears). The result 
is a whitening of the frequency response for that listener, 
although extreme gains are prevented. As each gain is relative 
to 𝑇&'() , some overall additional gain may be required 
depending on the average loss. Due to the 16 kHz sampling rate, 
the highest frequency band used was centered on 6 kHz but the 
gain is adjusted as the average power in the 6 & 8 kHz bands. 
FIR filters were used to ensure a linear phase response. Due to 
the 70-sample look-ahead employed by the speech 
enhancement, any further processing can only look ahead up to 
10 samples. This limits the filter length. A type-I FIR filter has 
a symmetric impulse response with the center of symmetry at 
tap (N-1)/2; where N is odd. An FIR filter with 11 taps was used 
and a zero-phase filter realized by looking 5 samples into the 
future. This filter cannot affect frequencies below around 1.5 
kHz, therefore the 2 kHz band is taken as the lowest frequency 
band, where the gain is the average power of the 250 Hz, 500, 
1 kHz and 2 kHz bands. This results in in four bands: 

• A low-pass filter with a cut-off of 2500 Hz 
• A band-pass filter centered at 3 kHz with cut-off 

frequencies of 2.5 kHz and 3.5 kHz 
• A bandpass filter centered at 4 kHz with cut-off 

frequencies of 3.5 kHz and 5 kHz 
• A high-pass filter with a cut-off of 5 kHz 

Most of the speech energy will be within the 2500 Hz band and 
there is significant overlap between adjacent bands; as such this 
the system is compromised by the lookahead limit. In future 
models the gain could be applied directly to the spectrograms 
prior to reconstruction to negate this limitation. FIR filters were 
designed using the window technique (hanning window). Once 
gains are applied to each band, the signal is recombined, and 
the 5 sample look ahead applied. When combined with the U-
Net noise reduction, this results in a total system look-a-head of 
4.6875ms; well within the 5ms limit. 

Two channel compression [9] [1] was applied after the filter 
bank (one channel per ear) using a -6 dB threshold, a ratio of 
5:1, attack time of 4ms and a 75ms release time. 

Soft clipping [1] was applied to prevent sample values of 
greater than ±1 using the following:  

𝑓(𝑥) = /
𝑥 > 1,			(21 − 1)/21

−1 ≥ 𝑥 ≤ 1,			𝑥 − 𝑥*+/21
𝑥 < −1,			(21 − 1)/21	

  (4) 

3. Results and Discussion 
The mean MBSTOI over the development dataset was 0.56 and 
the median was 0.57. The baseline method evaluated over the 
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development dataset showed a mean and median MBSTOI of 
0.41.  

The inference time for the generation of a single example 
was around 6 minutes (Nvidia GTX 960 with 4Gb of memory, 
an intel i7 cpu, and 32 Gb ram). This is extremely high however 
it should be noted that the U-Net predicted a full 6 s long 
spectrogram every 70 samples and an inverse STFT is 
calculated for the full 6 s. As most of this signal is discarded, 
there is clear scope for significant optimization. 

The optimal parameters for the hearing aid model were 
found by repeatedly evaluating a subset of the dev set (the first 
ten scenes or 30 sound files). A subset was used due to time 
constraints and as such the scope of the investigation was 
relatively small. 
 
Table 1: Results of optimising the hearing aid parameters, 
𝑇&'() method refers to whether this is calculated per-ear or 
over both ears. 
 𝑻𝒃𝒆𝒔𝒕 

method 
𝐆𝐦𝐚𝐱 Clipping 

degree 
MBSTOI 

Baseline    0.31 
U-Net (no hearing aid)    0.54 
U-Net (with hearing aid) Per-ear 40 3 0.55 
U-Net (with hearing aid Per-ear 40 21 0.55 
U-Net (with hearing aid) Both 40 21 0.56 
U-Net (with hearing aid Both 30 21 0.57 
 

Table 1 shows that even without the hearing aid model 
the U-net outperforms the baseline method by a MBSTOI of 
0.23. The degree of clipping had little impact. Setting the gain 
relative to the best threshold band over both ears appears to 
perform better compared with using the best threshold per ear. 
A lower limit of 30 dB on the maximum gain performed slightly 
better than 40dB. Overall, the hearing aid only marginally 
increased the MBSTOI by around 0.03, this is most likely due 
to the compromised filter bank design imposed by the 
lookahead limitation. Figure 3 compares MBSTOI performance 
of the proposed algorithm, at different SNRs, with the baseline. 

 

 
Figure 3: Comparison of MBSTOI performance with 

baseline. 

For both speech and noise interferers there is a weak positive 
correlation between MBSTOI and SNR (speech: τ = 0.12, p < 
0.001; noise: τ = 0.27, p < 0.001). The correlation is weaker 
compared to the baseline results (speech: τ = 0.35, p < 0.001; 
noise: τ = 0.49, p < 0.001). This indicates that the proposed 
method is more robust to higher levels of interferers. Figure 3 
also shows that the MBSTOI performance is similar for speech 
and noise interferers at the same SNR, whereas for the baseline, 
the performance is lower when the interferer is speech. 
 
 

4. Conclusions and Further work 
In this paper an approach for speech enhancement for hearing 
aid users using a U-Net showed an improvement in the 
MBSTOI measure compared with the baseline method.  

The hearing aid model provided only a marginal increase in 
the MBSTOI measure; a better approach would incorporate the 
frequency adaption into the network. The method efficiency 
could be improved upon by some simple optimizations; the 
CNN output scope could be restricted to only the last 80 
samples, to reduce the model size; and the inverse STFT 
optimised. The resulting model was relatively small (2 million 
parameters) some further hyperparameter tuning may yield 
improvements. The loss function used was mean absolute error, 
loss functions that take into account the human perceptual 
system will likely yield better results. It would be interesting to 
include the STFT forward and backward transforms as layers at 
the start and end of the U-Net, this has the advantage of defining 
a loss function in the time-domain which would include phase. 
For the same reason it would be interesting to compare the 
performance of the U-Net with the wave-U-net, which has a 
very similar structure but takes the raw waveform as input, and 
all convolutions are 1D.  
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