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Abstract
Here we describe our submission for the 1st Clarity En-

hancement Challenge. The algorithm that we present is based
on two conv-TasNets and combines the information contained
on each of the listening sides to provide the model with potential
binaural cues. This information is combined through interme-
diate layers that we will refer to as “attention layers”, inspired
by the classical attention layers used in sequence to sequence
modeling. The implemented model is fed with stereo signals
and outputs its de-noised version with 2 ms latency. Results
show that attention layers can improve the signal-to-distortion
ratio, and could further improve speech intelligibility scores.
Index Terms: binaural speech enhancement, deep neural net-
works, attention layers

1. Introduction
This short report describes a submission for the 1st Clarity En-
hancement Challenge [1]. The designed system is based on two
conv-TasNets [2] and combines binaural information through
intermediate layers which will be referred to as “attention lay-
ers”. We present an analysis to assess the actual effect these
attention layers have on the models’ performance and the rea-
son why we selected the submitted model for final evaluation.
Figure 1 gives an overview of the complete system. The follow-
ing section gives more details on the present submission.

2. Methods
2.1. End-to-end Speech Enhancement

The main speech enhancement algorithm is based on two conv-
TasNets [2] and consists of three processing stages, as shown in
Figure 1: an encoder, a causal dilated 1D temporal convolution
network (TCN), and a decoder. The encoder creates a latent
representation of the input audio signal, used to estimate a mask
for each time step. The TCN then acts as a separator and the
de-noised audio is resynthesized by the decoder module. The
model was implemented in Tensorflow 2.0 [3] and the code for
training and evaluating it can be found online1.

2.2. Attention Layers

The main aspect we aim at investigating in this study is the ef-
fect that sharing information between listening sides has on the
models’ performance. We propose to share this information by
means of attention layers, inspired by the classical attention lay-
ers used in sequence to sequence modeling [4]. These layers
apply dot-product attention to each channel of the latent repre-
sentation at specific stages of the processing, as shown in Figure
1. Specifically, let Λ and ∆ ∈ IRC×T×S be the left and right la-
tent representations (on each of the listening sides) at a given

1https://github.com/APGDHZ/BinAttSE

processing stage, respectively. Here, C is the number of chan-
nels to be enhanced (i.e. one per hearing side), T is the number
of time steps of the encoded signal, and S is the number of
channels in the latent representation. We compute the attention
operation as follows:

Attention(Λ,∆) = Λ⊗∆. (1)

To investigate how the attention operation affects the mod-
els’ performance, we tested three configurations; one with no
attention layers (“Independent”), one with only one attention
layer, after the TCN (i.e., attention layer 1 in Figure 1; “Sin-
gle attention”), and another one that uses two attention lay-
ers, one after the coding stage and another one right after the
TCN (“Double attention”). Furthermore, we investigate the
effect that increasing the number of filters used in the skip-
connections has on the performance of the model. Specifically,
we tested S = {4, 8, 16, 32, 128, 256, 512, 1024}. It is impor-
tant to point out that because the first attention layer is the atten-
tion operation between the left and right coded inputs, only the
second attention layer size is variable; see Figure 1. We trained
each configuration and attention layer size (or the number of fil-
ters in the skip-connections for the “Independent” condition) 5
times to allow statistical inference.

2.3. Hyperparameters

Hyperparameters of the implemented models are shown in Ta-
ble 1. For a detailed description of these hyperparameters refer
to [2].

Description Value
Number of filters in autoencoder 64
Length of the filters 16
Number of channels in the bottleneck blocks 64
Number of channels in the skip-connections S
Number of channels in the convolutional blocks 64
Kernel size in convolutional blocks 128
Number of convolutional blocks in each repeat 2
Number of repeats 2

Table 1: Hyperparameters used for training the models. The
parameter that corresponds to the size of the attention layers
(S) is a factor that is investigated in this work and its value is
variable (refer to sections 2.2 and 3).

2.4. Dataset

The audio dataset was provided by the 1st Clarity Enhancement
Challenge [1]. The training data consist of 6,000 scenes in-
cluding 24 different speakers. The development dataset, used to
monitor the models’ performance, consists of 2,500 scenes in-
cluding 10 target speakers. Each scene corresponds to a unique
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Figure 1: Block diagram of the evaluated algorithms. “Independent” model bypasses both attention layers. “Single attention” model
uses attention layer 1 and bypasses attention layer 2. “Double attention” model uses both attention layer blocks.

target utterance and a unique segment of noise from an inter-
ferer [5], mixed at source-to-noise ratios (SNRs) ranging from
-6 to 6 dB. The three sets are balanced for the target speaker’s
gender. Binaural Room Impulse Responses (BRIRs) were used
to model a listener in a realistic acoustic environment. The au-
dio signals for the scenes are generated by convolving source
signals with the BRIRs and summing. BRIRs were generated
for hearing aids located in each listening side, providing with 3
channels each (front, mid, rear). For this study, only the front
channel was used at an 8 kHz sampling rate.

2.5. Training

The models were trained for a maximum of 100 epochs on
batches of two 4-second long audio segments. The initial learn-
ing rate was set to 1e-3. The learning rate was halved if the
accuracy of the validation set did not improve during 3 consec-
utive epochs, early stopping with a patience of 5 epochs was
applied as a regularization method, and only the best perform-
ing model was saved. For the model optimization, Adam [6]
was used to maximize the scale-invariant source-to-noise ratio
(SI-SNR) [7]. The models were trained and evaluated using a
PC with an Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz, 256
GB of RAM, and an NVIDIA TITAN RTX as the accelerated
processing unit.

3. Results
Figure 2 shows box-plots of the mean left/right SI-SNR as a
function of S. Here it can be seen that the models that use
attention layers perform numerically better than the “Indepen-
dent” model. Specifically, it can be seen that a double attention
layer yields significantly better performance than the model that
uses none. It can also be seen from Figure 2 that there is a pos-
itive correlation between attention size and SI-SNR, however,
this trend seems to happen until about an attention size of 128
units, above which the performance stops improving. Note that
the configurations with the same S contain the same number of
trainable weights.

Table 2 shows the maximum MBSTOI [8] scores achieved
for all the different tested models (5 for each configuration) and
the provided baseline [1]. It can be seen, that in general, the
models that use attention layers yield the highest scores. Based
on these results we decided to select the best performing “dou-
ble attention layer” model with attention layers of size 512 (see
bold condition in Table 2). This model contains 479,872 train-
able parameters and with our computing system, performed au-
dio speech enhancement in 21µs/sample.

Table 3 shows the evaluation MBSTOI [8] scores achieved
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Figure 2: Boxplots of the mean left/right SI-SNR for each of the
tested configurations. The black horizontal bars within each of
the boxes represent the median for each condition.

S
Validation MBSTOI

Baseline [1] Ind. Single att. Double att.
- 0.41 - - -
4 - 0.70 0.61 0.71
8 - 0.63 0.65 0.71
16 - 0.61 0.65 0.68
32 - 0.67 0.62 0.61
128 - 0.61 0.57 0.62
256 - 0.64 0.65 0.65
512 - 0.64 0.66 0.77
1024 - 0.65 0.65 0.69

Table 2: Maximum validation MBSTOI for all of the tested al-
gorithms. Bold value indicates the best performing algorithm
configuration.

by the submitted algorithm and the provided baseline [1].

Interferer Evaluation MBSTOI
Baseline [1] Submitted Algorithm

Speech 0.34 0.55
Noise 0.29 0.48

Table 3: Evaluation MBSTOI for the baseline system and the
submitted algorithm, for different interferer types.



4. Discussion & Conclusions
In this short report, we described our methods to test differ-
ent potential submissions for the 1st Clarity Enhancement Chal-
lenge. Based on the results we decided to submit a model which
performs well both on, SI-SNR and MBSTOI measures, specif-
ically, a binaural speech enhancement method based on two
conv-TasNets and containing two attention layers of size 512.
This model obtained a validation MBSTOI score of 0.77 and
a mean left/right validation SI-SNR of 9.17 dB. The score ob-
tained in the evaluation dataset, however, showed a drop in MB-
STOI score of about 0.25.
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