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Abstract
Hearing aid users suffer from poor listening experiences un-
der noise and reverberation. This paper introduces a cascaded
speech enhancement system to improve the intelligibility and
perception of hearing impairments in noisy-reverberant envi-
ronments. The system consists of three main parts: a deep
learning-based noise reduction, a weighted prediction error-
based dereverberation, and a personalized dynamic equaliza-
tion. The proposed enhancement method is in cooperation with
a hearing aid simulator for objective and subjective evaluations.
In terms of modified binaural short-time objective intelligibil-
ity (MBSTOI), the proposed method outperforms the baseline
on the test dataset in different noisy and reverberant conditions.
The subjective listening test shows that our scheme obtains a
lower word recognition rate under noise and speech interference
than other teams.
Index Terms: noisy-reverberant speech, speech intelligibility,
hearing aid, hearing loss, deep learning

1. Introduction
Over 20 percent of the global population have hearing loss (HL)
problems, according to World Report on Hearing in 2021 [1].
Hearing aid (HA) is the primary clinical intervention for hear-
ing impairments (HIs). However, the most common complaint
from HA wearers is that they struggle to understand speech in
the presence of noise and reverberation [2]. Therefore, it is
worthwhile exploring denoising and de-reverberant algorithms
to improve speech clarity in numerous environments for HA de-
vices [3].

Over the past decades, many classical speech enhancement
(SE) approaches including Wiener filter [4], Karhunen-Loève
transform [5, 6], and et al., have been implemented for HA.
Such unsupervised SEs significantly improve the output signal-
to-noise ratio (SNR) and intelligibility of the HA [7, 8]. How-
ever, due to the diverse acoustic conditions in real applications,
these conventional methods usually fail due to their inability to
deal with non-stationary noise and severe reverberations [9].

Recent advances in deep learning (DL) have demonstrated
its potential in the SE for hearing aids. For example, SEs
based on the ideal binary masking (IBM) or ideal ratio mask-
ing (IRM), in which deep neural networks (DNN) were built
for masking gains estimation, have been developed to improve
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the speech quality and intelligibility for HIs [10,11]. For exam-
ple, a two-stage DNN structure is utilized to leverage spectro-
temporal information in [10]. The subjective tests demon-
strate its significant intelligibility improvements for HI listen-
ers. Thanks to the powerful learning ability of the DNN, the
superiority of DNN-based SEs over the classical unsupervised
ones is evident in objective and subjective evaluations, espe-
cially for non-stationary noises. Nevertheless, considering the
diversity of acoustic interferences, in particular the reverbera-
tion, more innovative approaches are needed to fulfill the tech-
nical challenges in practical environments.

This paper proposes a cascaded speech enhancement
method for tackling denoising and dereverberation problems de-
fined in the First Clarity Enhancement Challenge (CEC1) [12].
A modified deep complex convolution recurrent network (MD-
CCRN) [13]is employed to suppress noise, followed by a multi-
channel weighted prediction error (WPE) [14] for dereverbera-
tion. Besides, the personalized dynamic equalization scheme is
utilized to compensate for individual HL. For the objective eval-
uation, the enhanced signals are processed by a HA simulator
and an HL module to compute the modified binaural short-time
objective intelligibility (MBSTOI) [15]. In the subjective lis-
tening test stage, the equalized audios were evaluated by mean
word identification rate of each HI subject.

2. Proposed System

In this section, we will discuss the signal model, neural net-
work-based denoising system and its training, multi-channel
dereverberation, and dynamic equalization used in our system.

2.1. Signal model

As shown in Figure 1, let s(t) and n(t) denote the target
and point source interfere signal, h1(t) and h2(t) represent
the room impulse responses (RIRs) of target and interfere
respectively, y(t) denotes the monaural noisy and reverberant
signal which the listener receives:

y(t) = s(t) ∗ h1(t) + n(t) ∗ h2(t) (1)

where ∗ denotes convolution. More scenario details could be
found in [12].
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Figure 1: Scenario diagram (top view).

2.2. System overview

As illustrated in Figure 2, a cascaded speech enhancement sys-
tem including MDCCRN and WPE is implemented to remove
the noise and reverberant components in tandem.

The CEC1 proposed two stages to evaluate the objective
and subjective intelligibility of submitted entries, respectively.
In the objective stage, the enhanced signal is processed by the
HA simulator and the HL simulator to compute the MBSTOI
scores. Besides, dynamic equalization is utilized for listen-
ing perception improvement. The equalized gain of each fre-
quency band is calculated on individual binaural pure-tone air-
conduction audiograms.

2.3. NN-based denoiser

The NN-based denoiser is a built-in MDCCRN that introduces
a complex encoder-decoder architecture with long-short term
memory (LSTM) layers as the bottleneck layer. As depicted in
Figure 3, MDCCRN consists of six complex conv2D/deconv2D
layers. Besides, the complex LSTM layer is implemented to
capture the temporal dependencies of the encoder outputs. The
complex convolution (S ∗W ) illustrated in the dotted box of
Figure 3 can be formulated as:

Fout = (Sr ∗Wr − Si ∗Wi) + j(Sr ∗Wi + Si ∗Wr) (2)

where Wr and Wi are the real and imaginary kernel weights of
the complex convolutional layers, respectively. Similarly, the
complex operations in LSTM and FC layer are the same as Eq.
(2).

Furthermore, skip connections (concatenation) and batch
normalization (BN) are used to stabilize the model training. In
this work, a casual DCCRN model configuration is designed for
real-time applications. Compared with the original DCCRN,

the proposed MDCCRN employs unidirectional LSTM layers
and smaller convolutional filter depths for conv2D/deconv2D
layers with causal padding.

The training target of MDCCRN is a complex ratio mask
(CRM) which is optimized by signal approximation. Given the
complex-valued spectrogram of the noisy input Y , the estimated
output X can be computed as:

X = Ymag ·Mmag · eYphase+Mphase (3)

where Ymag and Yphase denote the magnitude and phase of Y
respectively. Similarly, the Polar coordinate representation of
the CRM is M =Mmag · eMphase .

To further enhance the denoised output, we apply a post-
filter to the estimated CRM magnitude part Mmag [16]. The
postfilter introduces a wrapped gain as:

M̃mag =Mmag × sin(
π

2
Mmag) (4)

where M̃mag approaches 0 (noisier band) denotes de-
emphasize noise-domain frequency bins. Besides, a global gain
compensation is applied to avoid over-attenuating the enhanced
output signal:

G =

√√√√ (1 + β)E0
E1

1 + β(E0
E1

)2
(5)

where E0 is the energy of the enhanced signal using Mmag

and E1 is the enhanced signal energy using the wrapped gain
M̃mag . In this paper, β is set to be 0.02 as in [16]. Therefore,
the final output could be formulated as:

X = G · Ymag · M̃mag · eYphase+Mphase (6)

2.4. WPE based dereverberation

This method is a delayed linear prediction-based technique,
which only models the late reverberation into an auto-regressive
(AR) process and leaves early reflections of the speech signal in
the prediction residual. To account for the time-varying char-
acteristics of speech, the statistical model-based approach [17]
iteratively estimates the time-varying speech variance and nor-
malizes the linear prediction with this speech variance.

2.5. Post-processing module

The post-processing module is designed to simulate the listen-
ing perception of HA users. This module includes the HA sim-
ulator and the baseline HL simulator to simulate the signal pro-
cessing in hearing aids and impaired ears. Two options of HA
simulators are optimized to improve objective intelligibility and
subjective listening perception, respectively:
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Figure 2: Schematic diagram of the proposed system.
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Figure 3: Block diagram of MDCCRN-based denoising.

Table 1: Fitting strategy for dynamic equalization.

SPL(dB) HLT(dB) Gain(dB)

≤ 40dB
0dB ∼ 20dB 0
20dB ∼ 60dB HLT − 20
≥ 60dB 0.5×HLT + 10

40dB ∼ 65dB
0dB ∼ 20dB 0

20dB ∼ 60dB 0.6× (HLT − 20)

≥ 60dB 0.8× (HLT − 23)

65dB ∼ 90dB
0dB ∼ 40dB 0

≥ 40dB 0.1× (HLT − 10)1.4

SPL: sound pressure level; HLT: hearing loss threshold

Option-1: the baseline HA algorithm offered by CEC1.
The baseline fitting strategy is based on the Camfit compressive
algorithm [18], which calculates compression ratios for eight
subbands with center frequencies at [177, 297, 500, 841, 1414,
2378, 4000, 6727] Hz. The gains differ from each other accord-
ing to their varying bilateral pure-tone audiograms (PTA). The
HA module involves the openMHA configurations [19] which
could fit the HIs’ dynamic range and take advantage of the spa-
tial cues from two microphones of HA devices.

Option-2: a dynamic equalization modifying the spectrum
of the enhanced speech. This scheme is derived from the strat-
egy in Figure 6 of [20], which employs a loudness normaliza-
tion rationale. As shown in Table 1, the equalization gains are
calculated based on the sound pressure level and the hearing
loss threshold at each frequency band defined at Camfit com-
pressive algorithm.

To simulate impaired hearing, the baseline HL module is
developed by the Auditory Perception Group at the University
of Cambridge [20]. For subjects with HI, the main symptoms
are their reduced dynamic range and low resolution on temporal
and frequency information. The module simulated those attenu-
ated mechanisms with loudness recruitment and spectral smear-
ing processes.

3. Experiments
3.1. Dataset

In this experiment, the target signals are from the British Na-
tional Corpus recorded by 40 speakers [21], while speech in-

terfere data come from Open-source Multi-speaker Corpora of
the English Accents in the British Isles [22]. The noise interfer-
ences are a collection mainly from Freedsound [23] database.
The binaural room impulse responses (BRIRs) are created in
Real-time acoustic simulation software [24]. All the samples
are stereo utterances with the sampling rate at 44.1 kHz and
SNRs ranging from -6 to 12 dB. All the audios in the training
dataset are downsampled to 16 kHz to extract input features for
neural network training because the MBSTOI metric only fo-
cuses on the envelope below 5 kHz. Specifically, 2000 scenes
in the development dataset are randomly selected for validation.
Finally, mean MBSTOI scores are computed using the rest 500
scenes (3 listeners per scene) from the development dataset.

3.2. Settings

For all the schemes, the window length and hop size are 32
ms and 20 ms, and the FFT length is 512. The convolution
channels of the encoder and decoder for the casual MDCCRN
are {16-32-64-128-128-128} and {128-128-128-64-32-16}.
The kernel size, stride, and padding are modified to (5,1),
(2,1), and (0,0) for casual operations. The complex LSTM
between the encoder and decoder consists of two unidirec-
tional LSTM layers with 128 hidden units. Except for the
final output layer, BN and complex LeakyReLU are imple-
mented to all the hidden layers. AdaBelief optimizer [25] with
{lr = 0.002, ε = 1×10−12, β = (0.9, 0.999)} and CosineAn-
nealingLR [26] with {Tmax = 25, ηmin = 4 × 10−8} are
used to optimize the model for minimizing the objective loss
function:

L = LSI−SNR + LSTOI (7)
where LSI−SNR is the SI-SNR loss in [13] and LSTOI is the
STOI loss obtained using torch-stoi [27].

3.3. Evaluation

The MBSTOI, a binaural intelligibility metric based on short-
time objective intelligibility (STOI) [28], is employed for ob-
jective evaluation. Three candidate schemes are evaluated.

1) NN: a DNN-based speech enhancement system is ap-
plied to mixture input for denoising and de-reverberation.

2) NN-WPE: a DNN-based model followed by WPE to en-
hance the noisy-reverberant input. The DNN model first sup-
presses the noise, and then WPE removes the late reverberation
to obtain the anechoic output.

3) WPE-NN: WPE followed by a DNN-based model, in
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Figure 4: Word correctness in different noise types of the pro-
posed system, compared with the CEC1 baseline in subjective
listening test.

which the WPE and DNN are the same as that in 2). That is, the
DNN-based model removes the noise from the de-reverberant
output processed by WPE.

Subjective assessment is based on mean words identified
correctness rate (i.e., correctness) of 27 HIs who completed the
listening test conducted by the CEC1 organization.

3.4. Results and discussion

Table 2: Mean Speech intelligibility results on the dev set. The
bold value indicates the best-performing algorithm.

Methods MBSTOI

Baseline 0.53

NN 0.54

NN-WPE 0.60
WPE-NN 0.55

Clean 0.71

Table 2 gives the MBSTOI scores for different methods.,
where the ‘Clean’ represents the target signals, the ‘Baseline’
represents enhanced speech processed by the system baseline
(provided by the CEC1 organizer). As shown, the ‘NN-WPE’ is
the best (score 0.60) one in terms of the MBSTOI score. There-
fore, the ‘NN-WPE’ enhanced signals are submitted to the stage
of objective evaluation (E004). The casual model is trained for
80 epochs and the well-trained model with the best validating
results is used for evaluation. Besides, the computational com-
plexity is about 39 MFLOPs. The one-frame processing time
of our PyTorch implementation of MDCCRN is approximately
1ms tested empirically on an Intel i7-9750U PC.

Based on the ‘NN-WPE’ enhancement module, two options
of HA schemes are compared with objective metrics. The mean
score of equalized signals is slightly lower (0.57) than those
processed with the baseline HA module. However, it sounds
more natural and steadier. Therefore, the equalized signals are
submitted to the subjective evaluation stage (E018).

Figure 4 shows the median score and distribution of the
proposed system between speech and noise interference com-
pared with the baseline. The results show that the proposed
method is better than the baseline in background noise condi-
tions but worse in competing speaker scenes. The reason is
that the DCCRN incorporated in our system focuses on noise
reduction but ignores speech separation. Considering the hear-
ing difference between individuals, Figure 5 shows the correct-
ness among 27 HI listeners under two noise types, i.e., speech
and noise interference. Concerning the speech interference, 12
listeners perform better with the proposed enhancement algo-
rithms; the correctness of 17 listeners is higher than the baseline
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Figure 5: Word correctness comparison of each listener in dif-
ferent noise types.

in background noise. These results show that the enhancement
and equalization could be effective in specific circumstances for
HIs. However, there are still 8 participants who could not ben-
efit from our system under both noise-related conditions. The
reason may be their HL severity, as the correctness is below
50% in the baseline scene.

4. Conclusions
This paper proposed a cascaded speech enhancement scheme
for improving speech perception in noisy and reverberant envi-
ronments. The scheme involves deep learning-based denoising,
dereverberation utilized in WPE, and dynamic equalization-
based hearing compensation. Both objective and subjective
evaluation show that our system could improve speech intelligi-
bility for HIs under noisy-reverberant conditions. However, the
relatively poor performance under speech interfere shows the
essence of speech separation. Further work includes the inves-
tigations of novel approaches for speech enhancement in noise-
reverberant conditions (including speech separations) and more
effective HA algorithms to compensate for moderate to severe
HL.

5. ACKNOWLEDGE
This work is jointly supported by National Natural Science
Foundation of China (61771320), Guangdong Key Area R&D
Project (No. 2018B030338001). Qinglin Meng and Nengheng
Zheng are the corresponding authors.



6. References
[1] World Health Organization, “World report on hearing,” 2021.

[2] H. Levitt, “Noise reduction in hearing aids: A review,” Journal of
rehabilitation research development, vol. 38, no. 1, pp. 111–122,
2001.

[3] Y.-H. Lai and W.-Z. Zheng, “Multi-objective learning based
speech enhancement method to increase speech quality and in-
telligibility for hearing aid device users,” Biomedical Signal Pro-
cessing Control, vol. 48, pp. 35–45, 2019.

[4] P. Scalart, “Speech enhancement based on a priori signal to
noise estimation,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing Conference Proceedings, vol. 2.
IEEE, 1996, Conference Proceedings, pp. 629–632.

[5] A. Rezayee and S. Gazor, “An adaptive KLT approach for speech
enhancement,” IEEE Transactions on Speech Audio Processing,
vol. 9, no. 2, pp. 87–95, 2001.

[6] Y. Hu and P. C. Loizou, “A generalized subspace approach for
enhancing speech corrupted by colored noise,” IEEE Transactions
on speech audio processing, vol. 11, no. 4, pp. 334–341, 2003.

[7] Y. H. Lai, Y. Tsao, and F. Chen, “A study of adaptive WDRC in
hearing aids under noisy conditions,” Int. J. Speech Lang. Pathol.
Audiol, vol. 1, no. 2, pp. 43–51, 2013.

[8] F. Chen, Y. Hu, and M. Yuan, “Evaluation of noise reduction
methods for sentence recognition by mandarin-speaking cochlear
implant listeners,” Ear and Hearing, vol. 36, no. 1, pp. 61–71,
2015.

[9] Y. Xu, J. Du, Z. Huang, L.-R. Dai, and C.-H. Lee, “Multi-
objective learning and mask-based post-processing for deep
neural network based speech enhancement,” arXiv preprint
arXiv:1703.07172, 2017.

[10] E. W. Healy, S. E. Yoho, Y. Wang, and D. Wang, “An algorithm to
improve speech recognition in noise for hearing-impaired listen-
ers,” The Journal of the Acoustical Society of America, vol. 134,
no. 4, pp. 3029–3038, 2013.

[11] E. W. Healy, S. E. Yoho, Y. Wang, F. Apoux, and D. Wang,
“Speech-cue transmission by an algorithm to increase consonant
recognition in noise for hearing-impaired listeners,” The Journal
of the Acoustical Society of America, vol. 136, no. 6, pp. 3325–
3336, 2014.

[12] S. Graetzer, M. Akeroyd, J. P. Barker, T. J. Cox, J. F. Culling,
G. Naylor, E. Porter, and R. V. Munoz, “Clarity: Machine Learn-
ing Challenges to Revolutionise Hearing Device Processing,” in
Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH, 2021, Conference
Proceedings.

[13] Y. Hu, Y. Liu, S. Lv, M. Xing, S. Zhang, Y. Fu, J. Wu,
B. Zhang, and L. Xie, “Dccrn: Deep complex convolution re-
current network for phase-aware speech enhancement,” arXiv
preprint arXiv:2008.00264, 2020.

[14] L. Drude, J. Heymann, C. Boeddeker, and R. Haeb-Umbach,
“NARA-WPE: A Python package for weighted prediction error
dereverberation in Numpy and Tensorflow for online and offline
processing,” in Speech Communication; 13th ITG-Symposium.
VDE, 2018, Conference Proceedings, pp. 1–5.

[15] A. H. Andersen, J. M. de Haan, Z.-H. Tan, and J. Jensen, “Refine-
ment and validation of the binaural short time objective intelligi-
bility measure for spatially diverse conditions,” Speech Commu-
nication, vol. 102, pp. 1–13, 2018.

[16] J.-M. Valin, U. Isik, N. Phansalkar, R. Giri, K. Helwani, and
A. Krishnaswamy, “A perceptually-motivated approach for low-
complexity, real-time enhancement of fullband speech,” arXiv
preprint arXiv:.04259, 2020.

[17] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H.
Juang, “Speech dereverberation based on variance-normalized de-
layed linear prediction,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 18, no. 7, pp. 1717–1731, 2010.
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