recipes.cad2.task1.ConvTasNet package
Subpackages
- recipes.cad2.task1.ConvTasNet.local package
- Submodules
- recipes.cad2.task1.ConvTasNet.local.musdb18_dataset module
Compose
MUSDB18Dataset
MUSDB18Dataset.root
MUSDB18Dataset.sources
MUSDB18Dataset.suffix
MUSDB18Dataset.split
MUSDB18Dataset.subset
MUSDB18Dataset.segment
MUSDB18Dataset.samples_per_track
MUSDB18Dataset.random_segments
MUSDB18Dataset.source_augmentations
MUSDB18Dataset.sample_rate
MUSDB18Dataset.tracks
MUSDB18Dataset.dataset_name
MUSDB18Dataset.get_infos()
MUSDB18Dataset.get_tracks()
MUSDB18Dataset.root
augment_channelswap()
augment_gain()
- recipes.cad2.task1.ConvTasNet.local.system module
System
System.allow_zero_length_dataloader_with_multiple_devices
System.common_step()
System.config_to_hparams()
System.configure_optimizers()
System.default_monitor
System.forward()
System.lr_scheduler_step()
System.on_save_checkpoint()
System.on_validation_epoch_end()
System.prepare_data_per_node
System.train_dataloader()
System.training
System.training_step()
System.val_dataloader()
System.validation_step()
flatten_dict()
- recipes.cad2.task1.ConvTasNet.local.tasnet module
- Module contents
Compose
ConvTasNetStereo
MUSDB18Dataset
MUSDB18Dataset.root
MUSDB18Dataset.sources
MUSDB18Dataset.suffix
MUSDB18Dataset.split
MUSDB18Dataset.subset
MUSDB18Dataset.segment
MUSDB18Dataset.samples_per_track
MUSDB18Dataset.random_segments
MUSDB18Dataset.source_augmentations
MUSDB18Dataset.sample_rate
MUSDB18Dataset.tracks
MUSDB18Dataset.dataset_name
MUSDB18Dataset.get_infos()
MUSDB18Dataset.get_tracks()
MUSDB18Dataset.root
augment_channelswap()
augment_gain()
overlap_and_add()
Submodules
recipes.cad2.task1.ConvTasNet.eval module
recipes.cad2.task1.ConvTasNet.train module
Script to train causal and noncausal ConvTasNet on MUSDB18. Model is trained to separate the vocals from the background music.
- recipes.cad2.task1.ConvTasNet.train.create_callbacks(conf: dict, exp_dir: str) tuple [source]
Create callbacks for the training.
- recipes.cad2.task1.ConvTasNet.train.create_datasets_and_loaders(conf: dict) tuple [source]
Create train and val datasets and loaders.
- recipes.cad2.task1.ConvTasNet.train.create_model_and_optimizer(conf: dict) tuple [source]
Create model, optimizer and lr_scheduler.